В настоящее время для передачи и обработки информации мы, в подавляющем большинстве случаев, используем поток электронов. Однако, в силу ряда различных причин, такой подход начинает становиться тупиковым, для ускорения и увеличения эффективности вычислительных систем требуется нечто новое, использование фотонов света в качестве носителей информации, к примеру. Значительных успехов в этом деле добились исследователи из лаборатории Hewlett Packard Labs, которая является частью компании Hewlett Packard Enterprise (HPE), им удалось создать оптический процессор, на чипе которого присутствует тысяча оптических компонентов, способных очень быстро и эффективно выполнять достаточно сложные вычисления.
Кремниевые интегральные схемы со встроенными в них оптическими компонентами не являются абсолютной новинкой. Однако оптический чип, на кристалле которого объединено 1052 компонента, является самым большим и самым сложным функционирующим оптическим процессором на сегодняшний день. Разработка данного чипа производилась в рамках программы Mesodynamic Architectures Управления перспективных исследовательских программ Пентагона DARPA, а сам чип пока находится на стадии всестороннего тестирования и испытаний.
Модель, заложенная в принцип построения оптического процессора, основана на модели столетней давности, определяющей взаимодействие магнитных полей отдельных атомов. Эта модель предполагает, что каждый из атомов вращается, а направление его вращения может указывать «вверх» или «вниз». В ферромагнитных материалах, находящихся при температуре выше определенной точки, направления вращения атомов ориентированы хаотичным образом за счет их тепловых колебаний. Но при понижении температуры на первый план начинают выходить взаимодействия между атомами и направления их вращения упорядочиваются, ориентируясь в определенном направлении.
Программа, вводимая в компьютер, построенный на данном принципе, заключается в настройке уровня взаимодействия между «атомами», в роли которых выступают компоненты процессора. Эти компоненты могут находиться в одном из двух состояний и взаимодействовать друг с другом до тех пор, пока вся система не придет к самому низкому энергетическому состоянию, значение которого и будет являться решением поставленной задачи.
Первый оптический процессор, основанный на подобном принципе, был построен группой Йошихиса Ямамото (Yoshihisa Yamamoto) из Стэнфордского университета в 2014 году. Носителем информации в этой системе являлся свет, имеющий определенное значение сдвига его фазы, а в состав процессора входило четыре вычислительных элемента, изготовленных из зеркал, лазеров и других оптических элементов.
Принципы, заложенные в архитектуру оптического процессора, пока еще не позволяют сделать на его основе полноценный универсальный программируемый компьютер. Такие процессоры могут послужить в роли ускорителей при выполнении определенных задач, к примеру, обработки алгоритмов компьютерной графики, решения задач оптимизации по многим параметрам и т.п. Но в дальнейшем, по мере увеличения количества вычислительных узлов и расширения их функциональности, такие процессоры будут становиться все ближе и ближе к понятию, вкладываемому нами в термин «универсальный программируемый процессор».