Пространственно-временные кристаллы — новая форма материи

У большинства людей понятие «кристалл» ассоциируется с алмазами, полудрагоценными камнями или крупинками обычной соли. Все названные выше вещи имеют одно общее свойство — элементы их упорядоченной структуры повторяются в пространстве бесчисленное количество раз. Но на свете могут существовать и более экзотические кристаллы, к примеру такие, структура которых повторяется не только в пространстве и во времени. Возможность существования таких кристаллов является предметом горячих споров со стороны ученых, но Норману Яо (Norman Yao), физику из Калифорнийского университета в Беркли, в свое время удалось создать точное описание принципов «работы» пространственно-временных кристаллов, найти способы их создания и измерения основных параметров. Более того, взяв за основу работу Яо, две независимые группы ученых добились успехов в создании таких кристаллов, которые, безусловно, можно назвать еще одной формой материи.

Установки, созданные учеными из университета Мэриленда и Гарвардского университета, для создания пространственно-временных кристаллов используют разные принципы. Но интересен тот факт, что в разработке и создании обоих установок принимал непосредственное участие и Норман Яо. «Структура пространственно-временных кристаллов повторяется во времени из-за того, что их постоянно «пинают», заставляя колебаться» — рассказывает Яо, — «Прорывом в данном случае является не само создание временных кристаллов, а то, что они являются первыми образцами материи, неспособной самостоятельно прийти в состояние неподвижного равновесия».

Пространственно-временной кристалл, созданный группой Криса Монро (Chris Monroe) из университета Мэриленда, состоит из 10 ионов иттербия, которые взаимодействуют друг с другом через вращения (спины) их электронов. Это взаимодействие родственно взаимодействию между квантовыми битами (кубитами), которые являются базовыми блоками обработки информации в квантовых компьютерах. Для того, чтобы не допустить перехода этой системы в равновесное состояние, ионы подвергаются воздействию лазерного света, который упорядочивает спин электронов этих ионов. Свет второго лазера используется для создания в системе магнитного поля определенной конфигурации. Поскольку все ионы связаны друг с другом, то под воздействием вышеупомянутых факторов система начинает вращаться, возвращаясь к определенному положению через строго определенные промежутки времени.

С точки зрения квантовой механики, электроны, входящие в состав системы, могут сформировать временные кристаллы, которые не соответствуют понятию традиционной пространственной симметрии традиционных кристаллов, состоящих из наборов атомов одного или нескольких типов. Такое нарушение симметрии материала приводит к возникновению у него ряда уникальных и стабильных свойств. К примеру, колебательно-вращательное движение цепочки ионов иттербия, совершаемое под воздействием лазерного света и магнитного поля, приводит к тому, что временной кристалл возвращается в исходное положение два раза за один оборот, то, чего не может произойти с точки зрения системы, подчиняющейся только законам нормальной физики.

«Нарушение временной симметрии такими кристаллами является одним из самых удивительных их свойств» — рассказывает Яо, — «Несмотря на наличие задающего генератора имеющего определенный период колебаний, света лазера в данном случае, система синхронизируется так, что частота колебаний системы становится выше частоты колебаний задающего генератора».

Оставить комментарий